7 research outputs found

    Immunomodulatory effects of human umbilical cord wharton's Jelly-Derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells

    Get PDF
    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases. In this study, we investigated the immunomodulatory effect of umbilical cord derivedmesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately cocultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cellcell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naive T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses. Copyright © Spring 2013, Iran J Allergy Asthma Immunol. All rights reserved

    Scrutinizing the expression and blockade of inhibitory molecules expressed on T cells from acute myeloid leukemia patients

    No full text
    T cell exhaustion is an immunosuppressive mechanism which occurs in chronic viral infections, solid tumors and hematologic malignancies. Exhausted T cell has increased the expression of inhibitory receptors, and functional impairment. In this study, we investigated the expression from some of those inhibitory receptors being Programmed death 1 (PD-1), T cell immunoglobulin and mucin domain containing molecules 3 (TIM-3) and CD244 on T cells from Iranian acute myeloid leukemia (AML) patients. Peripheral blood samples were collected from Iranian newly diagnosed AML patients and flow cytometric analysis was accomplished for cell surface expression of PD-1, TIM-3, and CD244 on T lymphocytes. Functionality and proliferation assay were done in the presence of anti-PD-1 and anti-CD244 blocking antibodies. Immunophenotyping of T cells showed a significant increase of PD-1 and CD244 expression on CD4+ and CD8+ T cells of AML patients. Whereas blockade of PD-1 and CD244 increased the proliferation of CD4+ and CD8+ T lymphocytes of AML patients but IFN-ã production was not significantly increased. In conclusion, our data indicate that CD4+ and CD8+ T cells from AML patients appeared to be exhausted and blockade of some immune checkpoints can improve the proliferation of those cells. © June 2018, Iran J Allergy Asthma Immunol. All rights reserved

    Scrutinizing the expression and blockade of inhibitory molecules expressed on T cells from acute myeloid leukemia patients

    No full text
    T cell exhaustion is an immunosuppressive mechanism which occurs in chronic viral infections, solid tumors and hematologic malignancies. Exhausted T cell has increased the expression of inhibitory receptors, and functional impairment. In this study, we investigated the expression from some of those inhibitory receptors being Programmed death 1 (PD-1), T cell immunoglobulin and mucin domain containing molecules 3 (TIM-3) and CD244 on T cells from Iranian acute myeloid leukemia (AML) patients. Peripheral blood samples were collected from Iranian newly diagnosed AML patients and flow cytometric analysis was accomplished for cell surface expression of PD-1, TIM-3, and CD244 on T lymphocytes. Functionality and proliferation assay were done in the presence of anti-PD-1 and anti-CD244 blocking antibodies. Immunophenotyping of T cells showed a significant increase of PD-1 and CD244 expression on CD4+ and CD8+ T cells of AML patients. Whereas blockade of PD-1 and CD244 increased the proliferation of CD4+ and CD8+ T lymphocytes of AML patients but IFN-ã production was not significantly increased. In conclusion, our data indicate that CD4+ and CD8+ T cells from AML patients appeared to be exhausted and blockade of some immune checkpoints can improve the proliferation of those cells. © June 2018, Iran J Allergy Asthma Immunol. All rights reserved

    Analysis of killer cell immunoglobulin-like receptor genes and their HLA ligands in Iranian patients with Ankylosing Spondylitis

    No full text
    Ankylosing Spondylitis (AS) is a chronic rheumatic disease which mainly involves the axial skeleton. It seems that non-HLA genes, as well as HLA-B27 gene, are linked to the etiology of the disease. Recently, it has been documented that KIRs and their HLA ligands are contributed to the Ankylosing Spondylitis. The aim of this study was to evaluate the KIR genes and their HLA ligands in Iranian AS patients and healthy individuals. The present study includes 200 AS patient samples and 200 healthy control samples. KIR genotyping was performed using the polymerase chain reaction sequence-specific primer (PCR-SSP) method to type the presence or absence of the 16 KIR genes, 6 known specific HLA class I ligands and also, two pseudogenes. Two KIR genes (KIR-2DL3 and KIR2DL5), and among the HLA ligands, two HLA ligands (HLA-C2Lys80 and HLA-B27) genes were significantly different between case and control groups. In addition, we found some interesting KIR/HLA compound genotypes, which were associated with AS susceptibility. Our results suggest that the AS patients present more activating and less inhibitory KIR genes with combination of their HLA ligands than healthy controls. Once the balance of signal transduction between activating and inhibitory receptors is disturbed, the ability of NK cells to identify and lyse the targets in immune responses will be compromised. Accordingly, imbalance of activating and inhibitory KIR genes by up-regulating the activation and losing the inhibition of KIRs signaling or combination of both might be one of the important factors which underlying the pathogenesis of AS. © Copyright Winter 2016, Iran J Allergy Asthma Immunol. All rights reserved
    corecore